Master Syllabus

1. **COURSE NAME:** Physics I

2. **COURSE PREFIX AND NUMBER:** PHYS 210/2100

3. **COURSE DESCRIPTION:** Provides a fundamental non-calculus course in traditional mechanics topics including mechanical properties of materials, and fluids.

4. **PRE-REQUISITES:** High school physics or PHSC 105 (Elementary Physics).

MATH 111/1110 (Trigonometry) or MATH 129 (Applied Technical

Mathematics)

- 5. **STUDENT COMPETENCIES:** Upon successful completion of this course, the student will be able to:
 - 1. Solve problems using the metric system, significant figures, and scientific notation.
 - 2. Distinguish between vector and scalar quantities.
 - 3. Add and resolve vectors graphically and mathematically to obtain resultants, equilibrants, and components for use in the solution of various general physics problems.
 - 4. Visualize and solve one-dimensional and two dimensional kinematics problems.
 - 5. Recognize the basic forces in nature.
 - 6. Recognize the difference between passive and active forces.
 - 7. Recognize the difference between contact and non-contact forces.
 - 8. State and use Newton's three laws of motion.
 - 9. Solve problems involving the dynamics of uniform circular motion and the underlying principles of centripetal force and acceleration.
 - 10. State and solve problems using work and energy principles such as, the work-energy theorem, kinetic energy, gravitational potential energy, and the conservation of energy.
 - 11. Distinguish the difference between conservative and non-conservative forces.
 - 12. State and use the Impulse-Momentum theorem and the principle of conservation of linear momentum to solve one- and two- dimensional collision problems.
 - 13. Recognize the relationship between linear and rotational kinematics.
 - 14. Solve problems using rotational kinematics equations.
 - 15. Recognize the action of forces and torques on rigid bodies.
 - 16. Use the principles of translational and rotational equilibrium to solve rotational dynamics problem.

- 17. Display knowledge of the concepts of angular momentum and rotational work and energy.
- 18. Solve problems involving angular momentum and rotational work and energy.
- 19. Display knowledge of the concepts of simple harmonic motion, static equilibrium, and elasticity
- 20. State and use the principles of fluid mechanics.
- 21. Understand at a basic level the fundamental principles of Newtonian physics.
- 22. Solve word problems using the laws of Newtonian physics.
- 23. Apply problem solving skills acquired through this course to everyday situations.
- 24. Successfully continue in studies in General Physics II

6. COURSE OUTLINE:

- 1. Measurement Scientific notation, factor label method, scientific method, metric scale, SI units and significant figures.
- 1. Vectors Vector and scalar quantities, addition and resolution, resultants and equilibrants, choosing axes.
- 2. Kinematics One dimensional, two dimensional, and rotational
- 3. Dynamics Forces in nature, Newton's laws of motion, conservative and non-conservative forces, rotational systems, and torques
- 4. Momentum Momentum and Impulse, Law of Conservation of Momentum, internal and external forces, and elastic and inelastic collisions
- 5. Energy- Work, power, kinetic energy, potential energy, Law of Conservation of Energy, matterenergy conversions and elastic and inelastic collisions
- 6. Simple Harmonic Motion
- 7. Fluids Pressure, Pascal's Principle, Archimedes' Principle, and Bernoulli's equation.